Advanced Statistical Physics - Problem set 8

Summer Terms 2022

Hand in: Hand in tasks marked with * to mailbox no. (43) inside ITP room 105b by Friday 03.06. at 9:15 am.

12. Fourier transform

a) This problem is a mathematical problem, which will help you to get familiar with Fourier transformations. The Fourier representation of a real field $\psi(x)$ is defined as

$$
\psi(x)=\frac{1}{\sqrt{L^{d}}} \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{x}} \psi_{\mathbf{k}}
$$

Show that the inverse transformation is given by

$$
\psi_{\mathbf{k}}=\frac{1}{\sqrt{L^{d}}} \int d^{d} x e^{-i \mathbf{k} \cdot \mathbf{x}} \psi(x)=\alpha_{\mathbf{k}}+i \beta_{\mathbf{k}}
$$

and further deduce that $\alpha_{\mathbf{k}}=\alpha_{-\mathbf{k}}$ and $\beta_{\mathbf{k}}=-\beta_{-\mathbf{k}}$.
b) Explicitly derive the Fourier transform of the Landau-Ginzburg Hamiltonian

$$
\mathcal{H}=\int d^{d} x\left[\frac{a \tau}{2} \psi^{2}(x)+\frac{u}{4} \psi^{4}(x)+\frac{c}{2}(\nabla \psi)^{2}-h(x) \psi(x)\right] .
$$

13. Tricritical point*

$4+2+2+4$ Points
By tuning an additional parameter, a second order transition can be made first order. The special point separating the two types of transitions is known as a tricritical point, and can be studied by examining the Landau-Ginzburg Hamiltonian

$$
\beta \mathcal{H}=\int d^{d} x\left[\frac{t}{2} m^{2}+u m^{4}+v m^{6}-h m\right]=\int d^{d} x \Psi(m)
$$

where u can be positive or negative. For $u<0$, a positive v is necessary to ensure stability.
a) By sketching the energy density $\Psi(m)$, for various t, show that in the saddle point approximation there is a first-order transition for $u<0$ and $h=0$.
b) Calculate the critical value of the parameter $t=\bar{t}(u)$ for this transition and the discontinuity in the magnetization $\bar{m}(u)$.
c) For $h=0$ and $v>0$, plot the phase boundary in the (u, t) plane, identifying the phases, and order of the phase transitions.
d) The special point $u=t=0$, separating first and second order phase boundaries, is a tricritical point. For $u=0$, calculate the tricritical exponents α, β, δ and γ, governing the singularities in heat capacity, magnetization and susceptibility. (Recall: $C \propto t^{-\alpha}$, $\bar{m}(h=0) \propto t^{\beta}, \bar{m}(t=0) \propto h^{1 / \delta}$ and $\left.\chi \propto t^{-\gamma}.\right)$

